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The vortex loop observed in flow-visualization studies of boundary-layer transition 
has been investigated by mapping the instantaneous velocity and vorticity fields. All 
three velocity components have been measured with hot-film anemometers at  
numerous grid points in a measuring volume centred on the location where the vortex 
loop appears in flow-visualizaton studies. The instantaneous vorticity field has been 
computed from the velocity field, and the vortex loop is revealed in the longitudinal 
component of vorticity. The loop propagates downstream at approximately the 
primary disturbance wavespeed. The fluid in the outer part of the boundary layer 
travels faster, and flows over the loop. This forms the inflexional high-shear layer, 
which breaks down into the hairpin vortices. The magnitude of the vorticity in the 
high-shear layer is actually about three times larger than that in the loop. These two 
regions of vorticity are distinguished by the direction of the instantaneous vorticity 
vectors, i.e. the vectors in the high-shear layer run in the spanwise direction, while 
the vectors in the vortex loop run primarily in the downstream direction. This also 
explains why the loop cannot be detected with simple au/ay measurements. 

1. Introduction 
Transition from laminar to turbulent flow in a flat-plate boundary layer has been 

intensively studied since the classical work of Schubauer & Skramstad (1948), in 
which they were able to verify experimentally the linear stability theory of Tollmien 
(1931,1936) and Schlichting (1933,1935). It was recognized, however, that the larger 
part of the transition process involved highly nonlinear and, moreover, three- 
dimensional developments before the boundary layer actually became turbulent. 
Many elaborate experimental and theoretical investigations have attempted to 
clarify the later stages of transition ; however, no comprehensive theory exists which 
can explain them, on the one hand, and there is no general agreement on the exact 
physical processes involved, on the other. 

The apparently simple mean-flow geometry of the Blasius boundary layer on a flat 
plate must undergo a complicated set of manoeuvres to become turbulent. The 
current understanding of transition can be summarized in a list of ten stages : 

I,  appearance of two-dimensional small-amplitude linear oscillations (Tollmien- 
Schlichting waves) ; 
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11, amplification (or damping) of TS waves; 
111, large-amplitude nonlinear oscillations ; 
IV, emergence of transversely periodic three-dimensionality ; 

VI, formation of inflexional high-shear layer ; 
V, formation of longitudinal vortices and their intensification ; 

VII, appearance of multiple hairpin eddies (spikes) ; 
VIII, local breakdown (initial appearance of random motions) ; 

IX,  formation of a turbulent spot; 
X, coagulation of turbulent spots (turbulent flows). 

The first two steps are well described by the linear stability theory. When the 
disturbance amplitude of the streamwise velocity component exceeds about 0.01 U,,, 
where U, is the free-stream velocity, certain nonlinear effects appear in its amplification 
characteristics (step 111). The true fluid-dynamic nature of the nonlinear waves, 
however, is not yet quite accurately described. In spite of some recent theoretical 
attempts, it is still not known how the three-dimensionality of the disturbance 
originated or which parameters influence it (step IV). The formation of the longitudinal 
component of vorticity and, subsequently, the inflexional high-shear layer (steps V 
and VI) have been the more controversial stages of the transition process. It is during 
these stages that the primary vortex loop, or A-vortex, is observed to form and 
develop in flow-visualization experiments (Hama, Long & Hegarty 1957). The 
seventh and eighth steps occur as the high-shear layer begins to break down. The 
idea that the high-shear layer is sensitive to disturbances with frequencies higher 
than the Tollmien-Schlichting wave was originally proposed by Betchov (1960) and 
investigated in more detail by Greenspan & Benney (1963) in terms of a secondary 
instability. The formation of turbulent spots and the subsequent coagulation of the 
spots (the last two stages) which form the turbulent boundary layer was first observed 
by Emmons (1951). 

The focus of attention of this paper is on stages V and VI. Some attempts have 
been made to model the flow field in this region. Perhaps the most successful 
approaches have been by numerical methods. A numerical solution of the three- 
dimensional Navier-Stokes equations has been recently computed by both Orszag 
& Kells (1980) and Kleiser (1982) for a temporally amplifying disturbance in plane 
Poiseuille flow. Their results predict a longitudinal vorticity field similar to that 
measured in the boundary layer on a flat plate. Similar results have been obtained 
for the Blasius flow by Wray & Hussaini (1980). Although one must be cautious in 
interpreting the results obtained from a calculation that assumes spatial periodicity, 
it does appear that numerical solutions of the complete Navier-Stokes equations are 
making significant progress towards computing the transition process. 

The vortex-loop concepts, which are primarily based on flow-visualization experi- 
ments, began with Theodorsen’s (1955) proposal that the horseshoe vortex might be 
a fundamental unit of turbulence. Hama et al. (1957) used dye to visualize the 
transition process, and concluded that the vortex loop was indeed the primary 
structure of the disturbance during the three-dimensional stage of transition. The 
hydrogen-bubble flow-visualization technique was used by Hama & Nutant (1963) 
to refine the vortex-loop concept, and show that the primary vortex loop created the 
instantaneous high-shear layer that leads to the formation of hairpin vortices. 
However, these experiments lacked the quantitative detail necessary to conclusively 
prove the existence of the vortex loop. 

Other experiments were conducted to clarify the three-dimensional structure. 
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FIGURE 1. Photograph of hydrogen bubbles showing the vortex loop near X = 60 cm shortly before 
the formation of hairpin eddies. The flow is from right to left. The hydrogen-bubble wire is 
positioned close to the critical layer. 

Klebanoff, Tidstrom & Sargent (1962) measured the streamwise and spanwise 
velocity components in great detail using hot-wire anemometry, and were able to  
identify the presence of streamwise‘vorticity in the flow field. Kovasznay, Komoda 
& Vasudeva (1962) measured all three velocity components, and concluded that a 
low-speed fluid ‘bump’ was responsible for the high-shear layer formation. Tani & 
Komoda (1962) and Komoda (1967) investigated the effects of spanwise periodicity 
of the mean flow on the transition process, and found that the characteristics of the 
disturbance could be altered. Based on a flow-visualization study, Wortmann (1977) 
proposed a slightly different concept, which he described as a ‘ roof-shingle ’ arrange- 
ment of the original vortex loop and secondary ‘antiloop’. 

The purpose of this sketchy summary of investigations into stages V and VI is to 
illustrate the current understanding (or lack of it) of the nonlinear three-dimensional 
stage of transition. Clearly, there is no general agreement on the physical mechanisms 
leading to  breakdown of the laminar boundary layer. With the current availability 
of laboratory computers and efficient digital data-analysis techniques, we felt that  
it would be possible to  clarify the flow structure, and hence the transition mechanism 
at  this state of development. Indeed, i t  was the goal of the present experiment to 
resolve unequivically the true three-dimensional structure of the disturbance before 
the breakdown stage, by quantitatively mapping all three components of the 
instantaneous velocity and vorticity fields. 

I n  order to illustrate some of the terms used in this paper, a photograph (taken 
by Stephan de la Veaux) of a vor$ex loop that formed during stages V and VI is shown 
in figure 1. The hydrogen bubbles show the loop shortly before the formation of 
hairpin eddies. The ‘tip ’ region is the centre portion of the loop, which connects the 
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two 'leg' regions. The tip is situated higher in the boundary layer and travels 
downstream faster than the legs. The leg regions appear t o  contain large streamwise 
components of vorticity. 

I n  $2 of this paper the experimental parameters, data-acquisition and data-analysis 
techniques that were used in this study are described. This is followed in $3 by a 
presentation of the time-averaged results of the flow field, which includes mean 
velocity and mean vorticity. The time-averaged properties of the disturbance are 
examined in $4. Section 5 is primarily concerned with the instantaneous vorticity 
field. I n  $5.1 the vorticity associated with the vortex loop is examined, while in $5.2 
the vorticity field surrounding the loop and the corresponding inflexional high-shear 
layer development are considered. The conclusions are presented in $6. 

2. Experimental details 
The low-turbulence water channel used in this investigation was specifically 

designed for the study of boundary-layer transition. Its overall length was 14.6 m, 
with a test section width and length of 150 cm and 820 cm respectively. The boundary 
layer developed on the false bottom of the test section, which was a flat glass plate 
0.64 cm thick. The water level above the plate was held at 17.5k0.05 cm. I n  order 
to prevent separation on the plate surface, a 4: 1 semi-elliptic leading edge was 
attached and given a slight downward angle. Flow visualization with dye ensured 
that the stagnation line occurred on the top side. The free-stream velocity U, 
was 10.05k0.5 cm/s. The r.m.s. (root-mean-square; amplitude of the free-stream 
turbulence was reduced to less than 0.002U0 over the spectrum from 0.01 Hz to  
1 kHz by inserting before the contraction a 1 m thick section of porous foam and 
three 5 cm thick honeycomb sections. The water temperature was 25.5k0.6 "C. 

An initially two-dimensional disturbance was introduced into the boundary layer 
by oscillating a 0.25 mm diameter tungsten wire, which spanned the entire width of 
the test section. Tests using a laser beam reflected from the wire showed the motion 
of the wire to be quite uniform. I n  this particular experiment the wire was located 
a t  187 ern from the leading edge a t  a mean height of Y = 0.5 cm, and w-as driven by 
a mechanical lever-cam arrangement. The motion of the lever was measured by a 
linear transducer for use as a reference signal during the data acquisition and analysis. 
The wire itself was stretched very tightly to ensure that the amplitude was uniform 
across the span, and to avoid any distortion caused by the loading of the flow. The 
frequency of the wire oscillation was 0.263 Hz, which corresponded to a non- 
dimensional frequency parameter F = 2nfv/ = 1.44 x lo-*, where f is the frequency 
and v the kinematic viscosity. By extrapolation from the disturbance amplitudes a t  
downstream locations, the amplitude of the disturbance at the wire was estimated 
to  be 0.01 U,. Such a large initial amplitude was used to ensure that the disturbance 
development was highly repeatable. No attempt was made to  control artificially the 
three-dimensional development of the disturbance. 

By using the hydrogen-bubble flow-visualization technique, the transition process 
in this experiment was identified to be the same as that observed by Hama & Nutant 
(1963). The velocity-measuring locations formed a rectilinear volume, which was 
laterally centred at the location where the tip of the vortex loop appeared. This 
measuring volume consisted of eight streamwise (X-axis, u-velocity) locations 
ranging from 35 to 70 em from the wire in increments of 5 cm. I n  the spanwise 
direction (Z-axis, w-velocity) were eight measuring stations, which covered a 4 cm 
width. Normal to the plate (Y-axis, v-velocity) were 16 measuring locations over a 
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3.05 em height for the spanwise velocity component measurements. When the 
vertical velocity component was measured only 14 measuring locations could be 
reached, due to physical limitations of the vertically oriented probe near the plate. 
In  this paper the total velocity is represented by a lower-case letter, the mean velocity 
by a capital letter, and the fluctuating component with a primed lower-case letter, 
e.g. u = U+u'.  The same notation is used for vorticity. 

All three velocity components were measured at each grid point in the measuring 
volume using constant-temperature hot-film anemometers. The probes were the 
slant-film type, and were operated at  7 % overheat ratio. Although this is a relatively 
low overheat ratio, it was more than adequate to resolve the highest frequencies 
encountered, and low enough to prevent air bubbles from forming on the probe sensor. 
Nevertheless, an extensive and frequent de-aeration, as well as a three-stage filtering 
of the water, was required to reduce the size of the foreign particles and dust to less 
than 0.2 pm, thus ensuring a quantitatively repetitive performance of the probe. 

In order to obtain the instantaneous cross-flow velocity components (21, w), the 
slanted probe sensor must be oriented in two different directions for each cross-flow 
component, and the corresponding cooling-velocity signals subtracted at each instant 
in time. To do this a phase-averaged cooling-velocity signal was computed for each 
of the four probe orientations required (two in the ( X ,  2)-plane and the other two 
in the (X, Y)-plane) at  each grid point. In  this way the probe could be placed at  
exactly the same point, although the orientation of the sensor was changed. Next 
the phase-averaged u-, v- and w-velocity components could be computed over one 
cycle of the disturbance oscillation after the cooling-velocity signal that represented 
the average disturbance signal at  the grid point was found. The phase equal to zero 
position was taken to be the instant when the reference signal crossed zero with a 
positive slope. 

The hot-film probes were calibrated by towing them through a small towing tank 
at  speeds ranging from 0.5 to 15.0 cm/s. A fourth-order polynomial was fitted to the 
calibration curve of E -  E,, against cooling velocity ucool, where E -  E,  is the difference 
between the bridge voltages when the probe is moving and at rest. The cooling 
velocity had been determined from Ucool = U cos aePf, where U was the probe speed 
and aePf was the effective angle of the sensor as determined by a direct calibration 
similar to Bradshaw's method (1971). 

The conditional-sampling program used to determine the phase-averaged signal 
took advantage of the repeatability of the flow field, and, since the flow developments 
were not exactly repetitive, a data-selection scheme was required. A band of 
acceptance based on the standard deviation of the amplitude and phases of the 
voltage minima was set, and only those signals that met the amplitude and phase 
criteria were used for the averaging. The variance between the individual signals at 
any particular phase angle was, in most cases, an order of magnitude lower than the 
variance over one cycle of the phase-averaged signal. Thus the phase-averaged signal 
accurately represented the instantaneous signals. From the phase-averaged signal the 
cooling velocities could be calculated ; then the streamwise and crossflow velocity 
components were computed. 

The vorticity at  a given grid point was computed from the velocity components 
using the so-called central-differencing technique. The three vorticity components 
Q,, QY and Q, were computed at  each grid point for various phase instants over 
one cycle. When contours of vorticity were plotted, a linear interpolation was used 
between the grid points. 
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FIQURE 2. Mean-velocity profiles at two spanwise locations compared with the Blasius profile: 
0,  2 = 0 cm; 0, - 1.5 cm; solid line is the Blasius profile: (a)  X = 40 cm; (6) 60 cm. 

3. Mean-flow field 
The mean longitudinal velocity profiles and comparison with the Blasius profile 

a t  locations X = 40 cm and X = 60 em from the oscillating wire are shown in 
figures 2(a ,b ) .  The solid line is the Blasius profile, where the left ordinate is 
7 = 1 . 7 2 Y / 4 2  Q* and the abscissa is UIU,. The measurements were made with the 
disturbance present. The displacement thickness Q* was determined by integrating 
the velocity defect of each experimentally measured velocity profile from the wall 
to the highest point measured in the free stream, Y = 3.05 cm. The ordinate on the 
right-hand side of the plots in figures 2 (a ,  b )  is an approximation to the dimensional 
height in centimetres. The symbols 0 and 0 show the experimentally measured 
velocities at two spanwise locations 2 = 0 and 2 = 1.5 em, which correspond 
respectively to the centre and side regions of the disturbance. 

The velocity profiles a t  the X = 40 em location represent the early nonlinear stage 
of development, where the disturbance uims amplitude maxima were approximately 
0.055U0. A t  both spanwise locations, the mean profiles are very close to the Blasius 
profile, even though the disturbance amplitude is already large enough for nonlinear 
effects to be present. The critical layer, a concept that originates from linear stability 
theory (and which is defined as the height where the mean-flow velocity equals the 
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FIQURE 3. Spanwise variation in displacement thickness for different streamwise locations: 
0 , Z  = 40 cm; A, 50 cm; 0 , 6 0  cm. 
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FIGURE 4. Streamwise variation in displacement thickness for two spanwise locations: 
0 , Z  = 0 em; A, -2.5 cm. 

disturbance wavespeed), is used in this report as a reference height within the 
boundary layer. The disturbance reaches its maximum amplitude uims = 0.14U0 at 
X = 60 cm, at which point the mean-velocity profiles are inflexional. 

As the disturbance develops in the downstream direction, it causes an appreciable 
non-uniformity in the displacement thickness across the span, as shown in figure 3. 
Since the measuring volume was so chosen to focus on the more active disturbance 
developments occurring near the spanwise centre of the volume, where a fine 
spanwise spatial resolution was required, its width did not cover the entire spanwise 

3.50 

3.15 

2.80 

2.45 

2.10 

Y (cm) 1.75 

1.40 

1.05 

0.70 

0.35 

0 

7 4 

2.0 1.5 1.0 0.50 0 

.\ I 

L 

1 

-0.50 -1.0 

Z (cm) 

-1.5 -2.0 -2.5 -3.0 
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The regions of negative vorticity have been shaded. 

wavelength. The displacement thickness increases more rapidly around 2 = 0 than 
a t  the other spanwise locations; thus by X = 50 cm a local maximum in S* exists in 
the spanwise centre. The downstream variation in S* is more clearly shown for 2 = 0 
and 2 = -2.5 cm in figure 4. While S* steadily increases along the centreline, it 
decreases along 2 = -2.5 cm at the later stages of the development. The Reynolds 
number based on 6* varies along the centreline from 711 to 850. 
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The spanwise variation in 6" can be explained by the effects of a counterrotating 
pair of mean longitudinal vortices acting on the mean-flow field. These vortices sweep 
low-momentum fluid toward the spanwise centre of the disturbance, causing the 
displacement thickness to increase in a manner described by Stuart (1965). The 
circulation about the vortex pair, one on either side of Z = 0.5 em, can be seen in 
figure 5 ,  which shows the projections of the mean-velocity vectors (w, v)  in the plane 
normal to  the flow direction (( Y ,  2)-plane) a t  X = 60 cm. The mean-flow field is not 
exactly symmetric, with the stronger longitudinal vortex in the 2 < 0 side, which 
is believed to be a result of the non-uniformity in the undisturbed mean-flow field. 
The flow below the critical layer moves toward the spanwise centre, where i t  turns 
upward, carrying the low-momentum fluid away from the plate. The displacement 
thickness increases, because the momentum deficit in the velocity profile is increased 
by this accumulation of low-momentum fluid. Along 2 = - 2.5 cm the opposite 
situation occurs and the displacement thickness decreases with downstream distance 
because the longitudinal vortices bring the high-momentum fluid down closer to the 
plate. 

The mean longitudinal vorticity Q, = a W/a Y -  a V/aZ has been computed from 
the mean transverse and vertical velocity components a t  X = 40 ern and X = 60 cm. 
The corresponding contours of constant Q,, which have been normalized by U,/S* 
(8* is the average displacement thickness across the measuring plane a t  a fixed 
streamwise location), are plotted in figures 6 ( a ,  b ) .  The approximate location of the 
critical layer is indicated by a broken line, which shows that a t  both streamwise 
locations the maxima are approximately centred on the critical layer. Further 
comparison of the contours of constant 52, in figures 6 (a, b) shows that 52, increases 
in magnitude as the disturbance develops downstream. The centres of the counter- 
rotating components move towards the spanwise centre of the disturbance. At 
X = 60 ern a second pair of counterrotating vortices is observed farther from the plate 
above the original vortex pair centred on the critical layer. 

4. Time-averaged properties of the disturbance 
This section is concerned with the description of the disturbance in terms of the 

uims amplitude distributions and the phase distributions of the fundamental and 
second harmonic. All three velocity components have been measured and more 
detailed information concerning v' and w' can be found in Williams (1982). The same 
two streamwise locations are considered as before, the X = 40 cm location 
representing the earlier stage of nonlinear development, while X = 60 cm is just prior 
to the disturbance breakdown. 

To show the development of the disturbance amplitude across the boundary layer 
and its variation across the span as the disturbance travels downstream, the profiles 
of the uims amplitude (expressed as percent of U,) are plotted against Y for X = 40 cm 
and X = 60 cm in figures 7 (a ,  b ) .  At the earlier stage of disturbance development, 
X = 40 em, the uims profiles are almost independent of the spanwise location across 
the measuring volume. Even though the disturbance is nonlinear, with an amplitude 
maximum ukax close to 0.055 U,, the profiles still resemble the linear-stability theory 
predictions. 

By the time the disturbance has reached its maximum amplitude at the downstream 
location of X = 60 em, the profiles have become strongly dependent on the spanwise 
position. The local uims maxima occur above the critical layer, reaching magnitudes 
as large as 0.14U0. The height of the local uims minimum has increased slightly to 

7 P L X  1.19 
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FIGURE 7. Distributions of uimS across the boundary layer for several spanwise locations 
( a )  X = 40 em; (b )  X = 60 cm. 0,  Z = 0; 0, -0.5; 0,  -1.0: x ,  -1.5; +, -2 .5 .  

Y = 1.5 cm, but, more significantly, above this point no appreciable change in the 
amplitude distribution has occurred. It is quite interesting that the local amplitude 
maximum outside the boundary layer near Y = 2.1 cm remains about 0.0lU0 for 
both downstream locations. Thus the major disturbance developments occur below 
the 180' phase-shift point in the boundary layer. 

In  order to reveal how the spanwise variation of the disturbance develops, the local 
maxima of u;,, are plotted against Z in figure 8 for each downstream location 
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FIGURE 8. Variation of uims maxima across the span for several streamwise measuring stations: 
0, X = 35 cm; A, 40; V, 45; 0,  50; 0, 55; 0, 60; x ,  65; +, 70. 

measured. The amplitude variation across the span is bimodal. The local amplitude 
maxima occur at X = 60 cm for two peaks in the spanwise direction 2 = 0.5 cm and 
- 1.0 cm. From this point on, the u& amplitude maxima decrease as the disturbance 
breaks down toward a turbulent state. 

The velocity signals can also be analysed in terms of the amplitude and phase 
distributions of the harmonic components present. The phase distributions in the 
downstream and transverse directions of the Fourier components are particularly 
interesting, because they provide the information about the shape of the wavefront 
and the wavespeed of the disturbance. These results show how the wavefront is 
distorted across the span (wavefront warping), and how the distortion increases as 
a result of varying phase velocities across the span. 

The u' fundamental phase variation across the boundary layer is shown, for 
example, in figures 9(a ,  b )  for the streamwise location X = 60 cm. Each profile 
corresponds to  a different spanwise location. Some general characteristics of all the 
phase distributions measured can be identified in these profiles. Above the phase-shift 
height the phase values are uniform in both the spanwise and vertical directions. 
Below this level the phase angles change rapidly. The uniform phase in the higher 
part of the boundary layer is believed to characterize the global features of the 
disturbance, and was used in computing the overall wavespeed. The phase in the lower 
region exhibits a more localized and detailed behaviour, which provides information 
on the local phase velocities and wavefront warping. 

Of primary interest is the variation of the phase in the downstream direction, since 
it is required to compute wavelengths and phase velocities, i.e. h = -ax,@# and 
cph = fh, where h is the wavelength, cph the phase velocity and # the phase angle. 
The phase angles of the fundamental and the second harmonic of the u' disturbance 

7-2 
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FIGURE 9. Distribution of u' fundamental phase across the boundary layer for several spanwise 
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a t  Z = 0 are plotted against the downstream location in figure 10. The phase of the 
fundamental is shown for two different vertical locations, one above the boundary 
layer, Y = 2.54 cm (box symbols), and the other inside the boundary layer where the 
u' fundamental amplitude is maximum (triangles). The phase of the second harmonic 
of u' (circles) is also measured a t  the location where its amplitude is a maximum. The 
wavelength A,, of the fundamental oscillation, computed from the free-stream phase 
variation, shows A, = 16.2 cm, and the corresponding phase velocity cph = 4.2 cm/s. 
The phase of the u' fundamental disturbance inside the boundary layer changes 
slightly less rapidly ; consequently, the wavelength is a little longer and the 
wavespeed a little faster, A, = 17.5 cm and cph = 4.5 cm/s. Thus the wavespeed of 
the fundamental is in fact dependent on the height inside the boundary layer. 
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FIGURE 10. Streamwise phase variation of the u' velocity; V, phase of the fundamental a t  
Y = 2.54 cm ; 0, phase of the fundamental a t  the height ofamplitude maximum of the fundamental ; 
0, phase of the second harmonic at the height of amplitude maximum of the second harmonic. 

The downstream gradient of the second-harmonic phase is about twice that of the 
fundamentaI. The corresponding wavcspeed ofthe second harmonic is cph2 = 5.3 cm/s, 
which is within 15% of the wavespeed of the fundamental disturbance inside the 
boundary layer. Since the fundamental and the second harmonic have the same 
wavespeed, within reasonable accuracy, the initial phase difference between the two 
waves will not change, and the second harmonic essentially travels downstream along 
with the fundamental. 

The next significant result of the phase measurements is seen in the u' phase 
variations in the spanwise direction, as shown in figures 11 (a ,  b). Flow-visualization 
experiments (Hama et al. 1957; Hama and Nutant 1963; Wortmann 1977) have 
consistently indicated that the wavefront of the disturbance warps across the span. 
The spanwise centre (peak) region of the disturbance appears to move faster 
downstream than the sides. The head of the A-vortex forms around the peak region, 
and the legs of longitudinal vorticity form on the sides. If the wavefront warping 
observed in the flow-visualization experiments is truly an indication of the disturbance- 
wavefront warping, then the u' phase should also vary across the span, and the 
spanwise phase variation should increase with increasing downstream distance. 
Indeed phase values for the u' fundamental and second harmonic, taken a t  the height 
in the boundary layer where the amplitude of each component is a maximum, clearly 
illustrate an increasing distortion of the wavefront from X = 40 cm to X = 60 em. 
It is quite astonishing, on the other hand, that  the disturbance in the free stream 
maintains a relatively uniform, essentially two-dimensional phase distribution across 
the span a t  both locations. This observation has a serious implication that, even 
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FIGURE 11. Variation of u' phase across the span: A, phase of the fundamental a t  Y = 3.05 cm; 
0, phase of the fundamental a t  the height of amplitude maximum of the fundamental; v, phase 
of the second harmonic a t  the height of amplitude maximum of the second harmonic. 

though the wave develops quite three-dimensionally inside the boundary layer (below 
the 180" phase-shift point), an observer in the outer pert of the boundary layer will 
be unable to recognize this development. Furthermore, even when an observer 
recognizes three-dimensionality in the outer flow, the true three-dimensional structure 
inside the boundary layer could be totally different from what he imagined. 

The increase in wavefront warping is explained by a dependence of the phase speed 
on spanwise location. The phase speed at 2 = 0 is slightly faster than that of the 
disturbance outside of the boundary layer, the outer-flow disturbance, which remains 
constant across the span. As a result, the phase difference between the inner boundary 
layer and outer-flow disturbances, A@ = @inner -@outer, increases from A@ = 180" at 
X = 40 cm to 210' a t  X = 60 em. In contrast, the disturbance inside the boundary 
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layer along 2 = 2.5 cm travels slower than the outer-flow disturbance, which causes 
the phase difference to decrease from Aq5 = 135" a t  X = 40 cm to Aq5 = 30" a t  
X = 60 em. Since the phase speed of the free-stream disturbance is uniform across 
the span, the differing phase speeds of the u' fundamental inside the boundary layer 
cause the wavefront to  warp further as the disturbance travels downstream. This 
varying phase velocity may also be a result of the vorticity concentration, as 
described later. I n  the earlier stage of the development, which may be described by 
the linear stability theory, the vorticity fluctuations are essentially due to the wavy 
motions inside the boundary layer, and the propagation velocity is the wave velocity. 
Once the vorticity is concentrated, however, its propagation velocity becomes the 
local convection velocity, which differs depending on the locations, particularly the 
vertical height. 

The spanwise phase variations of the second harmonic in the boundary layer are 
shown as the dotted lines in figure 11 (a ,  b ) .  As in the streamwise case, the phase 
variation of the second harmonic is approximately twice as large as the fundamental. 
Thus the second harmonic travels downstream with the same phase speed as the 
fundamental, not only along the spanwise centre of the disturbance, but also off- 
centre, where the phase speed of the disturbance decreases. The position of the 
second harmonic relative to  the fundamental is independent of spanwise or stream- 
wise location, and the nonlinear effects are said to 'ride' on the fundamental. 

5. Instantaneous vorticity field 

5.1. The vortex loop 

In  order to  describe the structure of the flow field, the velocity and vorticity fields 
have been computed and presented in terms of the total components, i.e. the mean 
plus fluctuating terms. In  this subsection the existence of the vortex loop will be 
shown by examining the longitudinal component of vorticity in the neighbourhood 
of the critical layer. In  $5.2 the vorticity field surrounding the loop will be discussed. 
As in the mean-flow case, all vorticity values have been normalized by $*/U,,. The 
three-dimensionality of the disturbance and the intensity of its streamwise vortices 
are most pronounced, and hence most clearly seen, at X = 60 cm. The structure of 
the disturbance upstream of X = 60 cm, although not as highly developed, is quite 
similar. Thus only data a t  X = 60 cm are presented in $5, because they are 
representative of the data at the upstream stations. 

The first indication of the structure of the vortical disturbance is seen in the 
contours of constant longitudinal vorticity in the ( Y ,  2)-plane normal to  the mean- 
flow direction in figures 12 (a-f) .  This is equivalent to looking upstream and watching 
the disturbance move through the measuring plane as the phase angle of the reference 
signal increases in increments of 60". The vorticity contours are superposed on the 
instantaneous-velocity vectors, which show the w- and v-components. The solid 
contours have values of vorticity that range from wx = -0.252 to  -0.063, and the 
dashed contours range from w x  = 0.063 to  0.252, both in increments of 0.063. The 
velocity vectors show the sense of the circulation around the maxima of w x .  It is clear 
that  a pair of counterrotating streamwise vortices exist in the instantaneous flow field 
from phase 0" to 180" with centres near the critical layer ( Y  = 0.5 cm). The 
longitudinal vortex with negative w x  is slightly stronger in magnitude than its 
positive counterpart, which indicates that the flow field is not exactly symmetric. As 
the phase angle increases, the centres of the wx maxima move sidewise away from 
spanwise centre and downward closer to the plate. 
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FIGURE 12. Contours of instantaneous streamwise vorticity superposed with the projections of the 
instantaneous velocity vectors in the ( Y ,  2)-plane a t  X = 60 cm. The solid lines are contours of 
positive vorticity and the dotted lines are the contours of negative vorticity. The time increment 
between plots corresponds to a 60' phase change of the fundamental oscillation. The contours are 
incremented by w x  = 0.063, beginning with wx = +0.063. 

The same contours of streamwise vorticity plotted in figures 12(a-f) have been 
superposed on the corresponding instantaneous-vorticity vectors in figures 13 (a-f ). 
The vectors in these figures are the total instantaneous-vorticity vectors projected 
on to the ( Y ,  2)-plane. It is significant that  the locations of the maxima of the wx 
vorticity component in the vicinity of the critical layer correspond to the local minima 
in the wz component for phase angles 0"-180". In other words, the w x  component 
is dominant in this particular region, which means the vortex lines are oriented 
primarily in the streamwise direction. These longitudinally directed lines of vorticity 
form the two counterrotating cores of vorticity, which are located on either side of 
R = 0. These cores ofvorticity are recognized as the legs of the vortex loop that have 
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FIGURE 13. Contours of the instantaneous streamwise vorticity superposed with the projections of 
the instantaneous vorticity vectors in the ( Y ,  2)-plane at X = 60 cm. The contours are shown as 
the dotted lines. The vectors are centred over the measuring point, with a x indicating the tip 
of the vector. 

been observed in flow-visualization studies. The w y  component of vorticity (observed 
in the vorticity vectors, figures l3u-f) also agrees with the concept of a loop-shaped 
tube of vorticity, whose tip is higher in the boundary layer than the legs. 

The apparent motion of the regions of strong w x ,  as the disturbance passes through 
the ( Y ,  2)-plane a t  X = 60 cm, suggests a A-shaped loop. The contours of constant 
streamwise vorticity (Iwxl = 0.13) plotted in a perspective view in figure 14 may more 
clearly depict its geometry. Here the X-axis has been replaced by - t ,  where t is the 
phase of the reference signal. The Taylor's hypothesis used here will not precisely 
describe the shape of the disturbance beyond X = 60 cm, as the flow field breaks 
down in that region. Preceding the breakdown, however, the shape of the disturbance 
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FIGURE 14. Perspective view of the legs of the vortex loop mapped by the streamwise-vorticity 
contour. lwxl = 0.13. The flow direction is from the top right to  lower left of the plot. 

does not change drastically, and the approximation probably gives a reasonable 
spatial description of the disturbance. 

The contours of longitudinal vorticity show that the strong component is confined 
to a region roughly 5 mm in vertical thickness and is more spread out (10-15 mm) 
horizontally. In  the downstream direction (decreasing phase angle) the legs of the loop 
converge towards the spanwise centre Z = 0. The cores of vorticity, which form the 
legs of the loop, must connect in the tip region to  close the loop. I n  the tip region, 
practically only the spanwise component of vorticity exists and w x  disappears. The 
tip is not easily identified in contours of wz vorticity, because the vorticity there is 
relatively weak compared with that in the other regions of the flow field. However, 
a large disturbance occurs in the v' velocity signal at approximately t = -445', which 
results from the awlax component of wz and indicates that  the tip of the vortex loop 
has just passed the measuring plane at that instant. 

5.2. Vorticity field around the loop 

The vorticity field surrounding the loop consists primarily of a strong oz component 
of vorticity. The contours of wz vorticity (solid lines) in the ( Y ,  2)-plane at X = 60 cm 
are shown in figures 15 (a- f )  for phase angles 0"-300". The contours of constant w x  
vorticity (both positive and negative) are superposed as the dotted lines. The wz 
contours have values ranging from -0.063 to -0.95 in increments of 0.189. The 
shaded areas correspond to regions of the strongest spanwise vorticity, wz < -0.44. 
The unshaded regions with closed wz contours are local minima in which the spanwise 
vorticity is almost zero. 

As previously shown, the maxima o f w z  vorticity do not. coincide with the maxima 
of w x .  Furthermore, from figures 15 (a-f ) one finds that the vortex loop does not have 
the largest magnitude of vorticity in the flow field. A region of strong vorticity lies 
above the legs of the loop near Y = 1.0 em, and a second pair of intense vorticity 
regions are found between the loop and the wall below Y < 0.3 em. These regions 
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FIGURE 15. Contours of instantaneous spanwise vorticity (solid lines) wz superposed with contours 
of streamwise vorticity (dotted lines) in the ( Y ,  2)-plane. The contours of spanwise vorticity are 
incremented by wz = -0.19 beginning with wz = -0.06. The phase angle is incremented by 60" 
between the figures. The shaded regions indicate wz < -0.44. 

of vorticity only exist during the time the loop passes through the measuring plane, 
and they closely follow the apparent movement of the loop. The vorticity maxima 
near the wall reach magnitudes twice that of the undisturbed Blasius flow maximum, 
and three times the longitudinal vorticity maxima found in the legs of the vortex 
loop (wXmax = 0.3). 

The strong wz component that lies above the vortex loop also appears in the 
vorticity vectors previously shown in figures 13 (a-f ). The vorticity-component 
configuration is inverted with respect to  the vortex loop, i.e. the transverse 
component of vorticity, w z ,  is a t  a local maximum, when the w x  component is 
negligible. Thus the lines of vorticity above the vortex loop are oriented essentially 
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in the spanwise direction, almost a t  right-angles to  the lines of vorticity in the legs 
of the vortex loop. Instead of forming a core as in the loop, the strong spanwise 
vorticity is spread out in a thin layer over about half the wavelength of the 
fundamental. Furthermore, the boundary between the lines of vorticity in the vortex 
loop and surrounding fluid is quite sharp, which distinguishes the two regions. Two 
structures are indeed present, the vortex loop and the layer of strong spanwise 
vorticity above it. 

The physical significance of the strong vorticity layer above the loop can be clearly 
recognized when the contours of wz vorticity are superposed on the instantaneous 
u-velocity profiles. In figures 16 (a ,  b )  the velocity profiles for two longitudinal cuts 
(( Y,T)-plane) a t  the spanwise locations 2 = 0 and -1.5 ern show the spatial 
relationship between the large shear au/a Y and the maxima of w, vorticity. The foot 
of the respective velocity profile on the abscissa gives its corresponding phase angle. 
The region of strong wz vorticity above the vortex loop actually corresponds to the 
instantaneous inflexional high-shear layer in the velocity profiles. The experiments 
of Klebanoff et al. (1962), Kovasznay et al. (1962), Hama & Nutant (1963) and 
Nishioka, Asai & Iida (1980), along with the theories of Betchov (1960) and Greenspan 
& Benney (1963), have shown that the inflexional high-shear layer is sensitive to 
high-frequency disturbances, which lead to the formation of hairpin vortices during 
the breakdown stage. 

How the inflexional high-shear layer forms can be determined by examining the 
velocity vectors observed from a reference frame that travels downstream with the 
speed of the outer-flow disturbance. Such a moving reference frame reveals the true 
structure of the disturbance flow field, which cannot be seen from the fixed-frame 
system (Hama, Williams & Fasel 1980). I n  figures 17(a,b) the projections of the 
instantaneous velocity vectors in the ( Y ,  5''-plane a t  2 = 0 and - 1.5 em (superposed 
with velocity profiles) clearly illustrate how the faster-moving fluid travels around 
the vortex loop. The circle in figure 17 (a )  represents the approximate location of the 
tip of the vortex loop at t = -45". 

Behind the tip is a fluid lump that is accumulated along the spanwise centre and 
travels downstream with the vortex loop as identified by the zero relative velocity. 
The coherent fluid lump is formed as a result of the induced velocity of the vortex 
loop in the same manner as the displacement thickness is changed. Then the shear 
layer forms from the faster-moving fluid travelling over the coherent fluid lump. 

At the 2 = -1.5 ern location (figure 1 7 b )  a 'flat' region in velocity profiles, 
au/a Y = 0, can be observed in the vicinity of the critical layer from phase 30 to  150". 
This region corresponds to the core of the vortex-loop leg, which has already been 
shown to have a negligible wz component, and travels downstream a t  a constant 
velocity. As faster-moving fluid flows over the core of the leg, the high-shear layer 
is formed. It is interesting that, in the spanwise off-centre region, the lower-momentum 
fluid is contained in the core itself and not transported away from the wall by the 
vortex loop, as found in the spanwise-centre region of the loop. Thus the momentum- 
transport concept does not play a direct role in forming this part of the shear layer. 

I n  addition to the region of strong vorticity above the A-vortex just described, 
there exists another region of strong vorticity between the vortex loop and the flat 
plate (figures 13 and 15). The maxima of wz can be identified in figures 16(a,b) as 
corresponding to the high-shear layer near the plate. The corresponding w x  component 
of vorticity has values as large as those found in the legs of the vortex loop. However, 
there are significant differences that distinguish these local vorticity maxima from 
the loop. First, the wz component maxima coincide with the w x  maxima. The angles 
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FIGURE 16. Contours of spanwise vorticity superposed with the instantaneous velocity profiles in 
the ( Y ,  T)-plane a t  X = 60 cm. (a )  2 = 0 cm; ( b )  - 1.5 cm. The contours are increniented by 
wz = -0.189 beginning with wz = -0.06. The shaded regions indicate wz < -0.44. 

of the corresponding vortex lines deviate no more than 15"-19" from the horizontal 
axis, in contrast with the almost 90" deviation for the legs of the vortex loop. 
Secondly, the sense of rotation is opposite to that of the vortex loop. Finally, the 
strong vorticity is spread over a thin layer instead of forming a tube-like structure. 
Thus this layer of vorticity cannot be the vortex loop observed in flow-visualizaton 
experiments. Although the layer of vorticity is not inflexional, it  may play a role in 
the later stages of transition (Nishioka, Asai & Iida 1981). 
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FIGURE 17. Instantaneous velocity profiles in the ( Y ,  T)-plane superposed with the instantaneous 
projections of the velocity vectors a t  X = 60 cm. ( a )  2 = 0 cm; ( 6 )  - 1.5 cm. The circle in (a )  shows 
the approximate location of the tip of the vortex loop. 

Figure 18 gives a clearer overview of the three-dimensional configuration of the 
significant vorticity-field structures. The contours of wz vorticity, wz = - 0.5, show 
the high-shear layer, which is above and slightly behind the vortex loop. The loop 
is mapped out with the contours of Iwx( = 0.13. (The strong vorticity layer near the 
wall has been omitted for clarity.) This arrangement of vorticity has escaped earlier 
detection for two reasons. First, most measurements of vorticity have been limited 
to that of only au/a Y ,  which essentially maps only the high-shear layer. Secondly, 
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FIGURE 18. Perspective view of the contours of spanwise vorticity (wz  = -0.5) and streamwise 
vorticity ( I W , ~  = 0.13), which has been shaded, showing the legs of the vortex loop and the high-shear 
layer above it. The flow is from the top right to the bottom left side of the page. The region of 
strong spanwise vorticity near the wall has been omitted for clarity. 

it  has sometimes been erroneously conjectured that the vortex loop would have the 
largest magnitude of vorticity in the instantaneous flow field, like a vortex filament. 
Actually, the total vorticity in the loop has a lower magnitude than that in the 
high-shear layers, and the transverse component is zero in some regions of the leg. 
The loop is composed of a core of vortex lines that travel together as the disturbance 
moves downstream. It is not clear that  all three components of velocity must be 
measured, as in the present investigation, to be able to describe the true nature of 
the vorticity field and, in particular, to uncover the vortex loop. 

6. Conclusions 
The instantaneous velocity components in three directions have been measured 

during the nonlinear, three-dimensional stage of the transition process preceding 
breakdown by the application of the phase-averaging technique to the hot-film 
anemometer signals. The mean and instantaneous vorticity fields have been computed 
from the velocities. The u‘ phase distributions across the span show the progressive 
warping of the disturbance wavefront inside the boundary layer as a result of a 
spanwise variation in phase velocity, in agreement with the vortex loop observed by 
flow visualization. The vortex loop is shown to exist near the critical layer, and is 
identified by a strong longitudinal component of vorticity where the transverse 
vorticity component is minimum. Thus the vortex loop consists of lines of vorticity 
that are oriented primarily in the streamwise direction. However, in contrast with 
the earlier idea associated with the visualization studies of the vortex loop, in which 
the vorticity was thought to be concentrated in the loop, the largest magnitude of 
instantaneous vorticity actually exists in high-shear layers that  are formed above and 
below, but not in, the vortex loop. The lines of vorticity in these high-shear layers 
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have primarily a spanwise direction which distinguishes them from the vortex loop. 
The high-shear layer above the vortex loop is formed by fluid moving faster than 
the loop, flowing over a coherent lump of fluid in the spanwise centre and over the 
legs of the loop at off-centre locations. The coherent fluid lump is created by the 
induced velocity of the vortex loop, and travels downstream with the loop. 

In  the present study it has been demonstrated that all three components of velocity 
and vorticity must be determined to fully understand the true three-dimensional 
nature of the disturbance preceding breakdown. The measurements of auja Y alone 
cannot detect the presence of the vortex loop, which is primarily composed of w x  
vorticity. On the other hand, the streakline visualization technique marks the centres 
of the cat’s-eye streamline patterns and overemphasizes their behaviour. The cat’s-eye 
flow field is the true structure of a perturbed two-dimensional flow field, and is indeed 
coherent. It may be conjectured that this coherent body of fluid inside the eyes 
remains coherent, and only this part of the flow field undergoes the three-dimensional 
distortion to form the vortex loop. It is then not surprising that the vortex loop does 
not have the largest vorticity, because, in spite of its appearance, the cat’s-eye pattern 
is associated neither with the vorticity concentration nor even its maxima. In  fact, 
the vorticity fluctuations in the Tollmien-Schlichting waves are minimum near the 
critical layer, where the centres of the cat’s-eye patterns are located. 

This investigation was conducted primarily under the support of the Office of Naval 
Research, U.S. Navy (contract NOOO14-76-C-0414). The second author (H. F.) 
actively participated in an early stage of the project during his stay at Princeton 
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